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Introduction

In recent years, methods from computational geometry have been widely adopted by the computer
graphics community yielding elegant and e�cient algorithms. This book aims at endowing practi-
tioners in the computer graphics field with a working knowledge of a wide range of geometric data
structures from computational geometry. It will enable readers to recognize geometric problems and
select the most suitable data structure when developing computer graphics algorithms.

The book will focus on algorithms and data structures that have proven to be versatile, e�cient,
fundamental, and easy to implement. Thus practitioners and researchers will benefit immediately
from this book for their everyday work.

Our goal is to familiarize practitioners and researchers in computer graphics with some very versa-
tile and ubiquitous geometric data structures, enable them to readily recognize geometric problems
during their work, modify the algorithms to their needs, and hopefully make them curious about
further powerful treasures to be discovered in the area of computational geometry.

Figure 1: Boehme-Zitat Böhme [1993]
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Figure 2: An overview of some of the data structures presented in this book.

In order to achieve these goals in an engaging yet sound manner, the general concept throughout
the book is to present each geometric data structure in the following way: first, the data strucure will
be defined and described in detail; then, some of its fundamental properties will be highlighted; after
that, one or more computational geometry algorithms based on the data structure will be presented;
and finally, a number of recent, representative and practically relevant algorithms from computer
graphics will be described in detail, showing the utilization of the data structure in a creative and
enlightening way.

We do not try to provide an exhaustive survey of the topics touched upon here — this would be
far beyond the scope of this book. Neither do we aspire to present the latest and greatest algorithms
for a given problem, for two reasons. First, the focus is on geometric data structures, and we do not
want to obstruct the view by complicated algorithms. Second, we feel that for practical purposes a
good trade-o↵ between simplicity and e�ciency is important.

The intended audience are practitioners working in 3D computer graphics (VR, CAD/CAM, enter-
tainment, animation, etc.) and students from both computer graphics and computational geometry.
Readers should be familiar with the basic principles of computer graphics and the type of problems
in the area.

We have arranged the chapters in roughly increasing degree of di�culty. The hierarchical data
structures are ordered by increasing flexibility, while the non-hierarchical chapters build on each
other. Finally, the last three chapters present generic techniques for “kinetizing”, “robustification”,
and dynamizing geometric data structures.

Figure 2 provides an overview of some of the data structures that will be discussed in the following
chapters. Chapter 1 presents quadtrees and octrees, which are, arguably, the most popular data
structure in computer graphics. Lifting one of the restrictions, thus makig the data structure more
flexible, we arrive at kd-trees, which are presented in Chapter 2. We can make this even more flexible,
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which yields BSP trees, discussed in Chapter 3. From kd-trees, we can also derive bounding volume
hierarchies, which are described in Chapter 4. Starting with a quadtree (or even a grid), we can
store more information about the object(s), thus arriving at distance fields (Chapter 5). In a sense,
distance fields are a discretized version of Voronoi diagrams, which are presented in Chapter 6.
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Chapter 7

Geometric Proximity Graphs

In a previous chapter, we have already studied a data structure that provides a notion of proximity
among its sites, without explicitely saying so, namely Delaunay diagrams (see Chapter 6). In this
chapter, we will learn about other graphs that are defined over the notion of proximity (with di↵erent
concrete meaning).

Interest in geometric proximity graphs (sometimes also referred to as neighborhood graphs) has
been at a high level for about 20 years, in many diverse areas such as computational geometry,
theoretical computer science, and graph theory, to name but a few. In a sense, polygonal meshes,
which are an extremely common boundary representation of graphical objects, are a special kind of
proximity graph.

These graphs can serve as a powerful tool to capture the structure or shape of otherwise unstruc-
tured point sets. Therefore, they have numerous applications in areas such as computer graphics,
computer vision, geography, information retrieval, routing in ad-hoc networks, and computational
biology, among many others (see Figure 7.1).

Even in psychology, they can help to explain some optical illusions [Sattar]. For instance, the
well-known Mueller-Lyer illusion [Coren and Girgus, 1978] consists of two arrows, one with inward,
the other with outward pointing arrow-heads (see Figure 7.2).

Figure 7.1: Identifying all pairs of close nodes in a set can reveal significant structure, such as a molecule
or a mobile ad-hoc network. However, care must be exercised when establishing that proximity is indeed
relveant (Cassiopeia courtesy of [Cassiopeia]).
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Figure 7.2: Proximity graphs can even help in psychology to explain some optical illusions.

In this chapter, we will present a small number of neighborhood graphs (other than polygonal
meshes), and a few applications in computer graphics, where they can help to detect structure in
point clouds.

7.1 A Small Collection of Proximity Graphs

In this section, we define a number of common proximity graphs and highlight some of their properties.
This will usually be done by introducing a neighborhood that defines exactly when two nodes (i. e.,
points) are neighbors of each other. The following definitions and discussions build on [Jaromczyk
and Toussaint, 1992].

7.1.1 Preliminary Definitions

Geometric graphs are graphs that are embedded in a metric space. Here, we will assume the space
Rd together with an Lp norm, 1  p  1. The length between two points x, y 2 Rd is defined as
d(x, y) := kx - ykp =

�P
d

i=1 |xi - yi|
p
�1/p.

Let V be a set of points in Rd. Edges are (unordered) pairs of points (p,q) 2 V ⇥ V, denoted
by pq.1 In the following, the length of an edge is equal to the Euclidean distance between its two
endpoints (any other metric could be used as well).

Proximity graphs are geometric graphs where the edges connect points that are in proximity to
each other (or where at least one point is close to the other). If pq is an edge in such a proximity
graph, then we say that p is a neighbor of q (and vice versa).

Exactly how proximity is defined depends on the type of neighborhood graph. It is always a
geometric property, which, at least, involves the two points that are neighbors of each other (and,
therefore, connected by an edge).

This property often involves spheres, so we define the sphere with center x and radius r as S(x, r) :=
{y 2 Rd | d(x,y) = r}. Analogously, we define the (closed) ball B(x, r) := {y 2 Rd | d(x,y)  r}.

7.1.2 Definitions of some proximity graphs

7.1.2.1 Unit disk graph

This is probably the neighborhood graph with the simplest definition. The set of edges of the unit
disk graph, UDG(V), is defined as

E := {pq | d(p,q)  1}

i. e., two nodes are connected by an edge i↵ their distance is at most 1.

1 Technically, one should distinguish between

1. the combinatorial structure of the graph, given by V and the set of edges E ⇢ V ⇥V , and

2. the geometrical realization, given by points that have an actual location in space and edges that are straight line
segments connecting the points.

In the following, we will not di↵erentiate between those two, hopefully without any confusion.
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p q
qp

q
p

Figure 7.3: The defining neigh-
borhood for the Gabriel graph is
the diameter sphere.

Figure 7.4: The lune is the defin-
ing neighborhood of the relative
neighborhood graph.

Figure 7.5: The sphere-of-
influence graph is defined by
spheres-of-influence around each
point.

This definition is motivated by mobile ad-hoc networks, where each node (e. g., cell phone) can
reach only other nodes within a certain radius (assuming that all phones have the same transmission
power).

7.1.2.2 Relative neighborhood graph

We define a lune L(p,q) := B(p,d) \ B(q,d), where d = kp - qk (see Figure 7.4).
The relative neighborhood graph of V, RNG(V), is defined by the set of edges

E := {pq k L(p,q) \ V = ?}

In other words,
pq 2 E , @v 2 V : d(p, v) < d(p,q) ^ d(q, v) < d(p,q).

Or, yet in other words,

pq 2 E , 8v 2 V : d(p,q)  max{d(p, v),d(q, v)} .

7.1.2.3 Gabriel graphs

The neighborhood here is a so-called diameter sphere G(p,q) := B
�p+q

2 , d

2

�
, where d = kp - qk (see

Figure 7.3).
The Gabriel graph over V, GG(V), is defined by the set of edges

E := {pq k G(p,q) \ V = ?}

In other words,
pq 2 E , 8v 2 V : d(p,q) 

p
d2(p, v) + d2(q, v) .

7.1.2.4 �-skeletons

This is a family of neighborhood graphs, parameterized by �, 1  � < 1.
For a fixed �, the neighborhood is the intersection of two spheres:

U�(p,q) := B

✓
(1 -

�

2
)p +

�

2
q,

�

2
d

◆
\ B

✓
(1 -

�

2
)q +

�

2
p,

�

2
d

◆
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$\beta = 1$

p q

$\beta = 2$

p q

$\beta = 3$

$\beta = 1.5$

p qp q

Figure 7.6: Examples of the family of lunes that define the �-skeleton.

Unit graph RNG

GG SIG

Figure 7.7: Example proximity graphs.
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Figure 7.8: The 3-SIG over the same point cloud
as in Figure 7.7.

Figure 7.9: The 3-SIG with additional pruning.

where d = �

2 kp - qk. The �-skeleton over V, BG�(V), is defined by the set of edges

E := {pq k U�(p,q) \ V = ?}

It is easy to see that RNG(V) = BG2(V) and GG(V) = BG1(V). Moreover, this family of proximity
graphs is monotonic with respect to �, i. e., �1 > �2 ) BG�1 ⇢ BG�2 . In other words, lower values
of � give denser graphs.

7.1.2.5 Sphere-of-Influence graph

The sphere-of-influence graph (SIG) seems to be less well-known [Michael and Quint, 2003, Boyer
et al., 2000, Jaromczyk and Toussaint, 1992].

While in the previous two graphs, the neighborhood is defined between pairs of points, here the
neighborhood, its “sphere of influence”, is defined for each point individually. More precisely, for each
point p 2 V, the radius rp to its nearest neighbor is determined. Then, the SIG over V, SIG(V), is
defined by the set of edges

E := {pq k d(p,q)  rp + rq}

The SIG tends to connect points that are “close” to each other relative to the local point density.
In contrast, the RNG and the GG tend to connect points such that the overall edge length is small
(think of cities and highways: it makes sense to connect two cities directly by a highway, unless there
is a third one close by that could be connected as well by a small detour). The extreme along that
line is the minimum spanning tree (see below) that has the least overall edge length.

Another di↵erence is that the SIG, unlike the RNG or GG, can be disconnected (see Figure 7.7).
This may or may not be desired, depending on the application.

A straight-forward way to reduce the likeliness or the number of “gaps” in the SIG is an extension,
the r-SIG, r 2 N [Klein and Zachmann, 2004a]. Here, the sphere-of-influence is not determined by
the nearest neighbor, but by the r-th nearest neighbor. Obviously, the larger r, the more points are
directly connected by an edge (see Figure 7.8).

A further extension can be applied to the r-SIG, if it is too dense or contains edges that are too
long. This is pruning of edges based on a statistical outlier detection method over the lengths of
edges [V. Barnett, 1994]. In statistics, an outlier is a single observation which is far away from the
rest of the data. One definition of “far away” in this context is “larger than Q3 + 1.5·IQR” where Q3

is the third quartile (Q2 would be the median), and IQR is the interquartile range Q3 - Q1. Our
experiments showed that best results are achieved by pruning edges with length of at least Q3 + IQR
[Klein and Zachmann, 2004a]. Figure 7.9 shows the pruned 3-SIG of the example point set.

Another extension could be to use ellipsoids instead of spheres [Klein and Zachmann, 2004a]. Then,
we have the additional degree-of-freedom of the orientation of the ellipsoids. For instance, we could
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DG MST

Figure 7.10: Example DG and MST for the same set of points as in Figure 7.7.

orient them along the direction of local largest variance. Depending on the application, this could
have the advantage of better separating close sheets.

7.1.2.6 Other geometric graphs

There are other geometric graphs that are more or less closely related to proximity graphs, such as
the minimum spanning tree and the Delaunay graph.

The minimum spanning tree (MST) spans (i.e., connects) all points by a tree (contains no cycles)
of minimal length. Thus, although this tree can reveal interesting structure in the point set, there is
no local proximity criterion for a pair of points.

The Delaunay graph (DG) is the dual of the Voronoi diagram (see Section 6.1.2). Alternatively,
we can define the DG as follows.

Definition 6

Two points p and q are connected by an edge, if they satisfy the empty circle property. P and q

satisfy the empty circle property i↵ there is a circle (or, in Rd, a hypersphere) such that p and q are
on its boundary and no point of V is in the interior of this circle.2

Actually, this definition is equivalent to the one given in Section 6.1.2. For the sake of uniqueness, we
assume that all points are in general position, meaning that in Rd no d + 1 points lie on a common
hyperplane, and no d + 2 points lie on a common hypersphere.

Figure 7.10 shows the DG and the MST for the same point set as before in Figure 7.7.

7.1.3 Inclusion property

Here, we demonstrate the following

Lemma 3

For a given set of points V,

MST(V) ✓ RNG(V) ✓ GG(V) ✓ DG(V).

This implies, in particular, that RNG(V) and GG(V) are connected, and that |MST(V)| 
|RNG(V)|  |GG(V)|  |DG(V)|. Furthermore, in R2, the number of edges is linear in the num-
ber of points.

2 Then, there is also a maximal empty hypersphere that has exactly d + 1 points on its boundary, two of which are p

and q.
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construct DG(V), set GG := DG(V)
for all edges pq 2 GG do

for all neighbors r of p or q do
if r inside diameter circle of p and q then

delete edge pq from GG
end if

end for
end for

Algorithm 7.1: Simple algorithm to construct the Gabriel graph, starting from the Delaunay graph of a
set of points.

q

r

pThe proof is fairly simple. Assume for the moment that V ✓ R2. MST(V) ✓
RNG(V): Assume, for the sake of contradiction, that some edge pq is in the MST
but not in the RNG. Then, the lune formed by p and q is not empty, i. e., there
is some other point r 2 L(p,q). But then, d(p, r) < d(p,q) and d(q, r) < d(p,q).
As a consequence, the original MST is not minimal, which can be seen as follows.
The original MST cannot contain both eges pr and qr (otherwise it would contain
a cycle). If edge pr is not there, we can replace pq by pr, and have constructed a tree with smaller
total edge length. Similarly, we can replace pq by qr if edge qr is not there yet.

p q

RNG(V) ✓ GG(V): Assume that pq is an edge in RNG(V). Then, the lune
defined by p and q is empty, and so is the diametric circle defined by p and q,
since it is contained in the lune.

r

p

q

GG(V) ✓ DG(V): Assume that pq is an edge in GG(V). Then, the diametric
circle defined by p and q is empty. Thus, the pair (p,q) also satisfies the empty
circle property as defined by Definiton 6. Usually, the DG has more edges than
the GG. This can be seen as follows. Imagine that the circle can slide to the left
or right, such that its diameter increases just so that p and q always stay on its
boundary (of course, it won’t be a diametric any more). Because of the definition
of the GG, we can slide the circle, at least a little bit, and at least to one side, without hitting another
point. Now, imagine that we slide the circle until it hits a third point, r. So we have now found two
more pairs of points, (p, r) and (q, r), that satisfy the empty circle property.3

In higher dimensions, the proofs work just the same (with hyperspheres instead of circles).

7.1.4 Construction Algorithms

7.1.4.1 GG and RNG

We start with a simple algorithm for constructing the GG over a set V of points. From Lemma 3, we
know that we can start with DG(V), and then remove those edges that are not neighbors according
to the diameter circle property. In a brute force algorithm, we could check this property for an edge
pq of DG(V) by just testing each point of V, whether it is inside the diameter circle of pq. A more
e�cient algorithm is to test only the neighbors of p, and those of q, against a candidate diameter
circle. This is summarized in Algorithm 7.1.

Similarly, we can construct the RNG(V) by starting with the DG(V). Then we consider each edge
pq of it in turn and check if there is any other point r 2 V that falls inside the lune made by p and
q, i. e., if

d(p, r) < d(p,q) ^ d(q, r) < d(p,q). (7.1)

3 Because we always assume V to be in general position (see Definiton 6).
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Figure 7.11: A simple heuristic leads to an O(dn2) algorithm to construct the Gabriel graph.

Another way to construct the GG would be the brute force approach. We can consider each
potential pair of points (p,q) (there are O(n2) of them). For each of them, we check whether there is
any other point r (there are O(n)) that is inside their diametric sphere. This test essentially involves
two distance computations, i. e.,

kp, rk2 + kq, rk2 < kp,qk2

which takes time O(d) in d-dimensional space. Overall, this brute-force approach would take O(dn3).
We can easily improve upon this by the following observation. When checking the pair (p,q)

whether they are neighbors in the GG, we must test whether any other point r is inside the diametric
sphere (see Figure 7.11 left). At the same time, we can check whether r is in the right half-space of
the plane Hqp that is orthogonal to the diameter pq and goes through q. If it is, then it cannot be
a Gabriel neighbor to point p (because q would be inside the diametric sphere of pr).

So a better algorithm is the following. For each point p we keep a list of neighbor candidates,
Np (initially, this is the whole point set). Then, as we test qi 2 Np for being a real neighbor, we
remove all r from Np that are to the right of Hqip (see Figure 7.11 right). This reduces the average
compexity to O(dn2). Algorithm 7.2 summarizes this heuristic.

The algorithm to construct the relative neighborhood graph is analogous to the one for constructing
the Gabriel graph.

7.1.4.2 SIG

The sphere-of-influence graph can be constructed much more e�ciently than the previous one (on
average), which is stated by the following

Lemma 4

The r-SIG can be determined in time O(n) on average for uniformly and independently point-sampled
models with size n in any fixed dimension. Moreover, it consumes only linear space in the worst case.

Proof. Dwyer [1995] proposed an algorithm to determine a SIG in linear time in the average case
for uniform point clouds. As r is constant, this algorithm can easily be modified so that it can also
compute the r-SIG in linear time. The algorithm consists of three steps.
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for all p 2 V do
Np  V \ p
for all q 2 Np do

for all rinV do
if Eq. 7.1 true then

consider next q
else

if r is to the right of Hqp then
remove r from Np

end if
end if

end for
end for

end for

Algorithm 7.2: Simple algorithm and heuristic to build the Gabriel graph.

First, the algorithm identifies the r-nearest neighbors of each point by utilizing the spiral search

proposed by Bentley et al. [1980]: the space is subdivided into O(n) hypercubic cells, the points
are assigned to cells, and the r-nearest neighbors of each point p are found by searching the cells in
increasing distance from the cell containing p. As O(1) cells are searched for each point on average
and a single query can be done in O(1) [Bentley et al., 1980], this first step can be done in time O(n).

Second, each point is inserted into every cell that intersects the r-nearest-neighbor sphere. On
average, most spheres are small so that each point is inserted into a constant number of cells, and a
constant number of points is inserted into each cell.

Finally, within each cell, all pairs of points that have been assigned to this cell are tested for
intersection of their spheres-of-influence. Because each cell contains only a constant number of
points, this can also be done in time O(n).

Avis and Horton [1985] have shown that the 1-SIG has at most c·n edges where c is a constant.
This c is always bounded by 17.5 [Avis and Horton, 1985, Edelsbrunner et al., 1989]. Guibas et al.
[1992a] extended this result to the r-SIG over a point cloud from Rd and showed that the number of
edges is bounded by cd ·r·n where the constant cd depends only on the dimension d. That means,
the r-SIG consumes O(n) space in the worst case. ⇤

Moreover, as mentioned in Toussaint [1988], ElGindy has observed that the line-segment intersec-
tion algorithm introduced by Bentley and Ottmann [1979a] can be used to construct a SIG in the
plane in O(n log n) time in the worst case. The algorithm of Guibas et al. [1992a] constructs the
r-SIG in time

O(n2- 2
1+b(d+2)/c+✏ + rn log2 n),

for any ✏ > 0 in the worst case.

7.2 Classification

7.2.1 Problem statement

Classification is a fundamental class of techniques that has applications in a huge number of areas,
such as pattern recognition, machine learning, and robotics.

It is used to partition a “universe” of all possible objects, each described as a bunch of data, into a
set of classes. It is mainly characterized by its decision rule. This rule determines, for a given object,
which class it belongs to.

There are two fundamental classes of decision rules: parametric and non-parametric rules.
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initialize grid with n cells
for all p 2 V do

assign p to its grid cell
end for
for all p 2 V do

find r-th nearest neighbor to p by searching the grid cells in spiral order around p with increasing
distance

end for
for all p 2 V do

for all cells around p that intersect the sphere-of-influence around p (in spiral order) do
assign p to cell

end for
end for
for all cells in the grid do

for all pairs pi,pj of points assigned to the current cell do
if spheres-of-influence of pi and pj intersect then

create edge pipj

end if
end for

end for

Algorithm 7.3: Simple algorithm to compute the r-SIG in O(n) time on average.

Parametric decision rules make the membership classification based on the knowledge of the a
priori probabilities of occurrence of objects belonging to some class Ci. This is captured by the
probability density functions, p(X|Ci), which characterize how probable is the measurement X should
the membership class be Ci.

Very often, however, it is di�cult to describe these probability density functions a priori, and often
they are just unknown.

In such cases, non-parametric decision rules are attractive, because they do not require such a
priori knowledge. Instead, these rules rely directly on the training set of objects. For this set, the
class membership is known precisely for each object in this set. This is a priori knowledge, too, but
much less di�cult to acquire. (For instance, it could be provided by a human.) Therefore, this is also
called supervised learning. The idea is, that a “teacher” feeds a number of example objects to the
“student”, and provides the correct answer for each of them. After the learning phase, the student
tries to determine the correct answer for unseen objects, based on the examples it has seen so far.

Usually, objects are represented by a set of features, each of which can be represented usually by
a real number. Thus, objects can be represented as points in the so-called feature space, and classes
are subsets of this space. Since we work with points, we can usually define a measure of distance

between points (which might be more or less well adapted to the objects).
A very simple, non-paramtric decision rule is the nearest-neighbor classifier. As its name suggests,

it is based on the distance measure, and it assigns an unknown object to the same class as the nearest
object from the (known) training set (see Figure 7.12). Most often, the Euclidean metric is used as
a distance measure, although it is not always clear that this is best suited for the problem at hand.

Although this rule is extremely simple, it is fairly good (see Figure 7.14). More precisely, as the
size of the trainig set goes to infinity, the asymptotic probability of error for the nearest-neighbor
rule, PNN

e
, can be bounded by

PNN
e

Popt
e

< 2 - Popt
e

N

N - 1

where Popt
e is the optimal, so-called Bayes probability of error, and N is the size of the trainig set

[Cover and Hart, 1967]. In other words, the NN error is never two times worse than the optimal
error.
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? 

Class B

Class C

Class A

Figure 7.12: The nearest-neighbor yields a simple
classifier.

Figure 7.13: Conceptually, the nearest-neighbor
classifier partitions the feature space into Voronoi
cells.

Figure 7.14: Comparison of the decision boundaries induced by the (optimal) Bayes classifier (squares),
and the nearest-neighbor classifier (triangles).
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Figure 7.15: The decision boundary of the nearest-
neighbor classifier runs between Delaunay neighbor
with di↵erent color.

Figure 7.16: The edited training set has the same
decision boundary, but less nodes.

Although the nearest-neighbor rule o↵ers remarkably good performance (largely due to its simplic-
ity), it is by no means a silver bullet. Some of its problems are:

• large space requirements (to store the complete trainging set);
• in high dimensions, it is very di�cult to find the nearest neighbor in time better than O(N) (this

is called the curse of dimensionality.

In addition, there are two more problems that all classification methods must deal with

• classes may overlap, so there are regions in feature space that are populated by representatives
from two or more classes;

• some representatives might be mis-labeled, i. e., they are classified into the wrong class (for in-
stance, because they are outliers, or because the human generating the trainig set made a mistake.

In the next two sections, we will learn about some simple methods to correct some of these mistakes.

7.2.2 Editing and reducing the set

Imagine that the classes correspond to colors, i. e., each point in the training set is labeled with a
color. The nearest-neighbor rule induces a partitioning of the feature space into a number of cells,
each of which belongs to exactly one point of the training set. These cells are exactly the Voronoi
cells of the Voronoi diagram induced by the training set (see Chapter 6 and Section 6.4.1).

So a class is exactly the union of all Voronoi cells that have the same color (see Figure 7.13). The
decision boundary of a decision rule are those points in feature space that separate classes. More
precisely, a point is on the decision boundary, i↵ any arbitrarily small, closed ball centered on this
point contains points of two di↵erent classes. With the nearest-neighbor rule partitioning feature
space into a set of Voronoi cells, the decision boundary are exactly those boundaries of the Voronoi
cells that lie between cells of di↵erent colors.

In practice, the Voronoi diagram and the decision boundary are rarely computed explicitely, es-
pecially in higher dimensions. But it is clear that the decision boundary alone is su�cient for
classification. So we can reduce the training set by removing those points that won’t change the
decision boundary. This is called editing the training set.

Instead of thinking in terms of Voronoi diagram and Voronoi cells, we can also think in terms of
the Delaunay graph (see Figure 7.15). The decision boundary then runs between neighbors in this
graph that have di↵erent color.
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Figure 7.17: Delaunay editing often leaves too many points in the edited set. The unfilled points will be
removed by Delaunay editing, but the contribution of the circled points is questionable.

With the Delaunay graph, it is very simple to edit the training set: we just remove all those nodes
(i. e., points) that have all neighbors with the same color. This will change the Delaunay graph and
the Voronoi diagram, but it will not change the decision boundary (see Figure 7.16).

7.2.3 Proximity graphs for editing

One problem with Delaunay editing is that it can still leave too many points (see Figure 7.17). These
are usually points that are well separated from other classes, and that contribute only portions of
the decision boundary very remote from the cluster of class representatives. Thus, these points are
usually less important for the classification of unknown points, which can be expected to come from
the same distribution as the training set.

Another problem is that computing the Delaunay graph takes, in the worst case, ⇥(ndd/2e), which
is prohibitively expensive in higher dimensions (sometimes even in 3 dimensions).

So it makes sense to pursue the following, approximate solution [Bhattacharya et al., 1981]: com-
pute a proximity graph over a given training set, which can be achieved more e�ciently, edit the
training set according to this graph, then classify unknown points using this edited training set. Of
course, the decision boundary will be di↵erent, but hopefully not too much, so that classification of
unknown points will still yield (mostly) the same result.

Figure 7.18 shows the same training set edited with the Delaunay graph (DG), the Gabriel graph
(GG), and the RNG (see Section 7.1.2). Because the GG contains (usually) less edges than the
DG, more nodes are marked having neighbors of the same color and are, thus, removed. So the GG
usually yields a smaller training set than the DG. A similar relation holds between RNG and GG.

Consequently, the decision boundary changes, because it is, being induced by the nearest-neighbor
rule, the boundary between Voronoi cells of di↵erent color in the Voronoi diagram over the edited
training set. As you can see in Figure 7.18, the GG does not change the decision boundary much,
but the RNG can change it quite substantially.
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Figure 7.18: Di↵erent proximity graphs yield di↵erent edited (i. e., reduced) trainin sets and, thus, di↵erent
approximations to the decision boundary

7.2.4 Cleaning the training set

In general, editing can serve several purposes. One of them is to reduce the size of the training set.
This is the meaning we have understood so far. Another one is to remove samples from the training
set that have been mis-labeled, that overlap with other classes (see Figure 7.14), or that are just
outliers.

This task can be solved by utilizing proximity graphs, too. A very simple method will be described
in the following [Sanchez et al., 1997].

The basic idea is to identify“bad”samples by examining their neighborhood. If most of the samples
are correctly labeled, and the training set is su�ciently dense, then an incorrectly labeled sample
will likely have a large number of di↵erently labeled neighbor samples. This idea is summarized in
Algorithm 7.4.

This algorithm can be refined straight-forwardly a little bit by modifying the rule when to mark a
sample. For instance, we could mark a sample only if the number of neighbors in the winning class
is at least 2/3 of the number of all neighbors. In addition, this method can be applied repeatedly to
the training set.

7.3 Surfaces defined by point clouds

In the past few years, point clouds have had a renaissance caused by the wide-spread availability of
3D scanning technology (see Figure 7.19). Such devices produce a huge number of points, each of
which lies on the surface of the real object in the scanner (see Figure 7.19). These sets of points are
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build the proximity graph of the entire training set
for all samples in the set do

find all its neighbors according to the proximity graph
determine the most represented class (the “winning” class)
mark the sample if the winning class is di↵erent than the label of the sample

end for
delete all marked samples from the set

Algorithm 7.4: Simple algorithm to clean (edit) a training set from incorrectly labeled samples.

Figure 7.19: 3D scanners (left) produce large point clouds (right) from real objects (middle).

called point clouds. For one object there can be tens of millions of points. Usually, they are not
ordered (or only partially ordered) and contain some noise.

In order to render [Pfister et al., 2000, Rusinkiewicz and Levoy, 2000, Zwicker et al., 2002, Bala
et al., 2003] and interact [Klein and Zachmann, 2004b] with objects represented as point clouds, one
must define an appropriate surface (even if it is not explicitly reconstructed).

This definition should produce a surface as close to the original surface as possible while being
robust against noise (introduced by the scanning process). At the same time, it should allow to
render and interact with the object as fast as possible.

In the following, we present a fairly simple definition [Klein and Zachmann, 2004a].

7.3.1 Implicit Surface Model

The surface definition begins with weighted least squares interpolation (WLS).
Let a point cloud P with N points pi 2 Rd be given. Then, an appealing definition of the surface

from P is the zero set S = {x|f(x) = 0} of an implicit function [Adamson and Alexa, 2003]

f(x) = n(x)·(a(x) - x) (7.2)

where a(x) is the weighted average of all points P

a(x) =

P
N

i=1 ✓(kx - pik)piP
N

i=1 ✓(kx - pik)
. (7.3)

Usually, a Gaussian kernel (weight function)

✓(d) = e-d
2
/h

2
, d = kx - pk, (7.4)
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a b c d

Figure 7.20: Visualization of the implicit function f(x) over a 2D point cloud. Points x 2 R2 with
f(x) ⇡ 0, i.e., points on or close to the surface, are shown magenta. Red denotes f(x) � 0 and blue
denotes f(x)⌧ 0. (a) point cloud; (b) reconstructed surface using the definition of Adamson and Alexa
[2003]; (c) utilizing the centered covariance matrix produces a better surface, but it still has several
artifacts; (d) surface and function f(x) based on the sphere-of-influence graph.
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Figure 7.21: Di↵erent weight functions (kernels). Note that the horizontal scale of the Gauss curve is
di↵erent, so that the qualitative shape of the curves can be compared better.

is used, but other kernels work as well (see below).
The bandwidth of the kernel, h, allows us to tune the decay of the influence of the points. It should

be chosen such that no holes appear [Klein and Zachmann, 2004b].
Theoretically, ✓’s support is unbounded. However, it can be safely limited to the extent where it

falls below the machine’s precision, or some other, suitably small threshold ✓". Alternatively, one
could use the cubic polynomial [Lee, 2000]

✓(d) = 2
⇣d

h

⌘3
- 3

⇣d

h

⌘2
+ 1,

or the tricube weight function [Cleveland and Loader, 1995]

✓(d) =
⇣
1 -

��d
h

��3
⌘3

,

or the Wendland function [Wendland, 1995]

✓(d) =
⇣
1 -

d

h

⌘4�
4
d

h
+ 1

�
,
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Figure 7.22: A proximity graph can help to improve the quality of the implicit surface by approximation
of the geodesic distance instead of the Euclidean distance.

all of which are set to 0 for d > h and, thus, have compact support (see Figure 7.21 for a comparison).
However, the choice of kernel function is not critical [Härdle, 1990].

The normal n(x) is determined by weighted least squares. It is defined as the direction of smallest
weighted covariance, i. e., it minimizes

NX

i=1

�
n(x)·(a(x) - pi)

�2
✓(kx - pik) (7.5)

for fixed x and under the constraint kn(x)k = 1.
Note that, unlike Adamson and Alexa [2003], we use a(x) as the center of the principal component

analysis (PCA), which makes f(x) much more well-behaved (see Figure 7.20). Also, we do not solve
a minimization problem like Levin [2003], Alexa et al. [2003], because we are aiming at an extremely
fast method.

The normal n(x) defined by (7.5) is the smallest eigenvector of the centered covariance matrix
B = (bij) with

bij =
NX

k=1

✓(kx - pkk)(pki - a(x)i)(pkj - a(x)j). (7.6)

There are several variations of this simple definition, but for sake of clarity, we will stay with this
basic one.

7.3.2 Euclidean Kernel

This simple defintion (and many of its variants) has several problems. One problem is that the
Euclidean distance kx - pk, p 2 P, can be small, while the distance from x to the closest point on S
and then along the shortest path to p on S (the geodesic) is quite large.

This can produce artifacts in the surface S (see Figure 7.20); two typical cases are as follows. First,
assume x is halfway between two (possibly unconnected) components of the point cloud; then it is
still influenced by both parts of the point cloud, which have similar weights in Equ. 7.3 and 7.5. This
can lead to an artificial zero subset ⇢ S where there are no points from P at all. Second, let us
assume that x is inside a cavity of the point cloud. Then, a(x) gets “drawn” closer to x than if the
point cloud was flat. This makes the zero set biased towards the “outside” of the cavity, away from
the true surface. In the extreme, this can lead to cancellation near the center of a spherical point
cloud, where all points on the sphere have a similar weight.

This thwarts algorithms based solely on the point cloud representation, such as collision detec-
tion [Klein and Zachmann, 2004b] or ray-tracing [Adamson and Alexa, 2004].

The problems just mentioned could be alleviated somewhat by restricting the surface to the region
{x : ||x - a(x)|| < c} (since a(x) must stay within the convex hull of P). However, this does not help
in many cases involving cavities.
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7.3.3 Geodesic Distance Approximation

As illustrated above, the main problems are caused by a distance function that does not take the
topology of S into account. Therefore, we will try to approximate the geodesic distances on the
surface S. Unfortunately, we do not have an explicit reconstruction of S, and in many applications,
we do not even want to construct one. Instead, we utilize a geometric proximity graph where the
nodes are points 2 P.

In principle, we could utilize any proximity graph, but the SIG seems to yield the best results.
We define a new distance function dgeo(x, p) as follows. Given some location x, we compute its

nearest neighbor p⇤1 2 P. Then, we compute the closest point p̂ to x that lies on an edge adjacent to
p⇤1. Now, conceptually, the distance from x to any p 2 P could be defined as

dgeo(x, p) = min
n2{p⇤1 ,p⇤2}

�
d(n, p) + kp̂ - nk

 
,

where d(p⇤, p) for any p 2 P is the accumulated length of the shortest path from p⇤ to p, multiplied
by the number of “hops” along the path (see Figure 7.22 left). However, it is not obvious that this
is always the desired distance. In addition, it is desirable to define the distance function with as few
discontinuities as possible. Therefore, we take the weighted average (see Figure 7.22 right)

dgeo(x, p) = (1 - a)
�
d(p⇤1,p) + kp̂ - p⇤1k

�

+ a
�
d(p⇤2,p) + kp̂ - p⇤2k

� (7.7)

with the interpolation parameter a = kp̂ - p⇤1k.
Note that we do not add kx - p̂k. That way, f(x) is non-zero even far away from the point cloud.
Of course, there are still discontinuities in dgeo and thus in function f. These can occur at the

borders of the Voronoi regions of the cloud points, in particular at borders where the Voronoi sites
are far apart from each other, such as points close to the medial axis.

The rationale for multiplying the path length by the number of hops is the following: if an (indirect)
neighbor p is reached by a shortest path with many hops, then there are many points in P that should
be weighted much more than p, even if the Euclidean distance kp⇤-pk is small. This is independent
of the concrete proximity graph used for computing the shortest paths.

Overall, when computing f by (7.2)–(7.6), we use dgeo in (7.4).

7.3.4 Automatic bandwidth computation

Another problem of the simple surface definition (without proximity graph) is the bandwidth h in
(7.4), which is a critical parameter.

On the one hand, if h is chosen too small, then the variance may be too large, i. e., noise, holes, or
other artifacts may appear in the surface. On the other hand, if it is chosen too large, then the bias
may be too large, i. e., small features in the surface will be smoothed out. To overcome this problem,
Pauly et al. [2002] proposed to scale the parameter h adaptively.

Here, we can use the proximity graph (e. g., a SIG) to estimate the local sampling density, r(x),
and then determine h accordingly. Thus, h itself is a function h = h(x).

Let r1 and r2 be the lengths of the longest edges incident to p⇤1 and p⇤2, resp., (see Figure 7.22).
Then, we set

r(x) =
1
r

· kp̂ - p⇤2k·r1 + kp̂ - p⇤1k·r2

kp⇤2 - p⇤1k
(7.8)

h(x) =
⌘ r(x)p
- log ✓"

(7.9)
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WLS, h = 5 WLS, h = 10 WLS, h = 14 SIG, autom. h

Figure 7.23: Reconstructed surface based on simple WLS and with proximity graph (rightmost) for a
noisy point cloud obtained from the 3D Max Planck model (leftmost). Notice how fine details as well as
sparsely sampled areas are handled without manual tuning.

where ✓" is a suitably small value (see Section 7.3.1), and r is the number of nearest neighbors that
determine the radius of each sphere-of-influence. (Note that log ✓" < 0 for realistic values of ✓".)
Thus, pi with distance ⌘ r(x) from p̂ will be assigned a weight of ✓" (see Equ. 7.4).

We have now replaced the scale- and sampling-dependent parameter h by another one, ⌘, that is
independent of scale and sampling density. Often, this can just be set to 1, or it can be used to adjust
the amount of “smoothing”. Note that this automatic bandwidth detection works similarly for many
other kernels as well (see Section 7.3.1).

Depending on the application, it might be desirable to involve more and more points in (7.2), so
that n(x) becomes a least squares plane over the complete point set P as x approaches infinity. In
that case, we can just add kx - p̂k to (7.8).

Figure 7.23 shows that the automatic bandwidth determination allows the WLS approach to handle
point clouds with varying sampling densities without any manual tuning: the smoothing of the
di↵erent sampling densities is very similar, compared to the “scale” (i. e., density). Notice the fine
detail in the range from the tip of the nose throughout the chin, and the relatively sparse sampling
in the area of the skull and at the bottom.

7.3.5 Automatic boundary detection

Another benefit of the automatic sampling density estimation is a very simple boundary detection
method. This method builds on the one proposed by Adamson and Alexa [2004].

The idea is simply to discard points x with f(x) = 0, if they are “too far away” from a(x) relative
to the sampling density in the vicinity of a(x). More precisely, we define a new implicit function

f̂(x) =

�
f(x), if |f(x)| > " _ kx - a(x)k < 2r(x)

kx - a(x)k, else
(7.10)

Figure 7.24, right, shows that this simple method is able to handle di↵erent sampling densities
fairly well.
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plain WLS, h = 22 2-SIG with pruning, ⌘ = 1.7 plus boundary detection
Figure 7.24: Automatic sampling density estimation for each point, allows to determine the bandwidth
automatically and independently of scale and sampling-density (middle), and to detect boundaries auto-
matically (right).

7.3.6 Complexity of function evaluation

The geodesic kernel needs to determine the nearest neighbor p⇤ of a point x in space (see Section Sec-
tion 6.4.1). Using a simple kd-tree, an approximate nearest neighbor in 3D can be found in O(log3 N)
[Arya et al., 1998].4

Klein and Zachmann [2004a] show that all points pi influencing x can be determined in constant
time by a depth-first or breadth-first search through the graph.

Overall, f(x) can be determined in O(log3 N).
In order to achieve also a fast practical function evaluation, we also need to compute the smallest

eigenvector quickly [Klein and Zachmann, 2004b]. First, we compute the smallest eigenvalue �1 by
determining the three roots of the cubic characteristic polynomial det(B-�I) of the covariance matrix
B [Press et al., 1992]. Then, we compute the associated eigenvector using the Cholesky decomposition
of B - �1I.5

In our experience, this method is faster than the Jacobi method by a factor of 4, and it is faster
than singular value decomposition by a factor 8.

7.4 Intersection Detection between Point Clouds

The surface defintion described in the previous sections is well suited for quick rendering, for instance,
by ray-tracing. In addition, it can also be used to determine the intersection between two point cloud
objects [Klein and Zachmann, 2005]. This will be explained in the following sections.

The problem is the following. Given two point clouds A and B, the goal is to determine whether
or not there is an intersection, i. e., a common root fA(x) = fB(x) = 0, and, possibly, to compute a
sampling of the intersection curve(s), i. e., of the set Z = {x | fA(x) = fB(x) = 0}.

In principle, one could just utilize one of the many general root finding algorithms [Pauly et al.,
2003, Press et al., 1992]. However, finding common roots of two (or more) nonlinear functions is
extremely di�cult. Even more so here, because the functions are not described analytically, but
algorithmically.

4 Under mild conditions, nearest neighbor can be done in O(log N) time by utilizing a Delaunay hierarchy [Devillers,
2002], but this may not always be practical.

5 The second step is possible because B - �I is positive semi-definite. Let �(A) = {�1,�2,�3} with 0 < �1  �2 
�3. Then, �(B - �I) = {0,�2 - �1,�3 - �1}. Let B - �I = USUT be the singular value decomposition. Then,
x

T(B - �I)x = x
TUSUT

x = y
TSy � 0.

Thus, the Cholesky decomposition can be performed if full pivoting is done [Higham, 1990].
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Figure 7.25: Outline of the point cloud intersection detection.

Fortunately, here we can exploit the proximity graph we already have in the surface defintion of
the objects and, thus, achieve much better performance.

First, the algorithm tries to bracket intersections by two points on one surface and on either side
of the other surface (see Figure 7.25). Second, for each such bracket, it finds an approximate point in
one of the point clouds that is close to the intersection (see Figure 7.26). Finally, this approximate
intersection point is refined by subsequent randomized sampling. This last step is optional, depending
on the accuracy needed by the application.

Steps 1 and 3 will be solved by a randomization approach. Both steps 1 and 2 will utilize the
proximity graph. In the following, we describe each step in detail.

7.4.1 Root Bracketing

As mentioned before, the algorithm starts by constructing random pairs of points on di↵erent sides
of one of the surfaces. The two points should not be too far apart, and, in addition, the pairs should
evenly sample the surface.

An exhaustive enumeration of all pairs is, of course, prohibitively expensive. Therefore, we pursue
the following, randomized (sub-)sampling procedure.

Assume that the implicit surface is conceptually(!) approximated by surfels (2D discs) of equal
size [Pfister et al., 2000, Rusinkiewicz and Levoy, 2000]. Let Box(A,B) = Box(A) \ Box(B) and
A = A \ Box(A,B). Then, we want to randomly draw points pi 2 A such that each surfel si gets
occupied by at least one pi; here, “occupied by pi” means that the projection of a(pi) along the
normal n(pi) onto the supporting plane of si lies within the surfel’s radius.

For each pi we can easily determine another point pj 2 A in the neighborhood of pi (if any), so
that pi and pj lie on di↵erent sides of fB. We represent the neighborhood of a point pi by a sphere
Ci centered at pi.

An advantage of this is that the application can specify the density of the intersection points that
are to be returned by our algorithm. From these, it is fairly easy to construct a discretization of the
complete intersection curves (e. g., by utilizing randomized sampling again).

Note that we never need to actually construct the surfels, or assign the points from A explicitly
to the neighborhoods, which we describe in the following. Section 7.4.2 describes how to choose the
radius of the spheres Ci.

In order to find a pj 2 A \ Ci on the “other side” of fB, we use fB(pi)·fB(pj)  0 as an indicator.
This, of course, is reliable only if the normals n(x) are consistent throughout space. If the surface
is manifold, this can be achieved by a method similar to Hoppe et al. [1992]: utilizing a proximity
graph (such as the SIG), we can propagate a normal to each point pi 2 A. Then, when defining f(x),
we choose the direction of n(x) according to the normal stored with the nearest neighbor of x.6

6 Surprisingly, the direction of n(x) is consistent over fairly large volumes without any preconditioning.
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Figure 7.26: Two point clouds A and B and their intersection spheres I1 and I2. The root finding proce-
dure, when initialized with p1,p2 2 A, will find an approximate intersection point inside the intersection
sphere I1.

In order to sample A such that each (conceptual) surfel is represented by at least one point in the
sample, we use the following

Lemma 5

Let A be a uniformly sampled point cloud. Further, let SA denote the set of conceptual surfels
approximating the surface of A inside the intersection volume of A and B, and let a = |SA|. Then,
we can occupy each surfel with at least one point with probability p = e-e

-c , where c is an arbitrary
constant, just by drawing n = O(a lna + c·a) random and independent points from A. These points
will be denoted as A 0.

Proof: see Klein and Zachmann [2005].
For instance, if we want p � 97%, we have to choose c = 3.5, and if a = 30, then we have to draw

n ⇡ 200 random points.
The next section will show how to choose an appropriate size for the neighborhoods Ci. After that,

Section 7.4.3 will propose an e�cient way to determine the other part pj of the root brackets, given
a point pi 2 A 0.

7.4.2 Size of Neighborhoods

The radius of the spherical neighborhoods Ci has to be chosen so that, on the one hand, all Ci cover
the whole surface defined by A. On the other hand, the intersection with each adjoining neighborhood
of Ci has to contain at least one point in A 0 so as to not miss any collisions lying in the intersection
of two neighborhoods. The situation is illustrated in Figure 7.27.

To determine the minimal radius of a spherical neighborhood Ci, we introduce the notion of
sampling radius.

Definition 7 (Sampling radius)

Let a point cloud A as well as a subset A 0 ✓ A be given. Consider a set of spheres, centered at A 0,
that cover the surface defined by A (not A 0), where all spheres have equal radius. We define the
sampling radius r(A 0) as the minimal radius of such a sphere covering.

The sampling radius r(A 0) can obviously be estimated as the radius r of a surfel si 2 SA.
Let FA denote the surface area of the implicit surface over A. Then, the surfel radius r can be

determined by
FA

a
= ⇡r2 ) r =

r
FA

a⇡
.
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Figure 7.27: If the spherical neighborhoods Ci (filled disks) are too small, not all collisions can be found.
(i) Adjoining neighborhoods might not overlap su�ciently, so their intersection contains no randomly
chosen cloud point. (ii) The surface might not be covered by neighborhoods Ci.

Assume that the implicit surface over A can also be approximated by surfels of size r(A). Then,
FA can be estimated by

FA = |A|·⇡r(A)2.

Overall, r(A 0) can be estimated by

r(A 0) = r(A)·

s
|A|

a
⇡ r(A)·

s
Vol(A,B)

Vol(A)·a ·|A| .

The size of A, |A|, can easily be estimated as |A| Vol(A)
Vol(A,B) , and the sampling radius r(A) can easily be

determined in the preprocessing.

7.4.3 Completing the Brackets

Given a point pi 2 A 0, we have to determine other points pj 2 A \ Ci on the other side of fB in
order to bracket the intersections. From a theoretical point of view, this could be done by testing
fB(pi) ·fB(pj)  0 for all points pj 2 A 0 \ Ci in time O(1) because |A 0| can be chosen constant.
In practice however, the set A 0 \ Ci cannot be determined quickly. Therefore, in the following, we
propose an adequate alternative that works in time O(log log N).

We observe that A 0 \Ci ⇡ A 0 \Ai, where Ai := {x | 2r(A 0) - �  kx - pik  2r(A 0)} is an anulus

around pi (or, at least, these are the pj that we need to consider to ensure a certain bracket density).
By construction of A 0, A 0 \Ai has a similar distribution as A \Ai. Observe further, that we don’t
necessarily need pj 2 A 0.

Overall, the idea is to construct a random sample Bi ⇢ A\Ci such that Bi ⇢ Ai, |Bi| ⇡ |A 0 \Ai|,
and such that Bi has a similar distribution as A 0 \Ai.

This sample Bi can be constructed quickly by the help of Lemma 5: we just choose randomly
O(b lnb) many points from A \Ai, where b := |A 0 \ Ci|.

We can describe the set A \ Ai very quickly, if the points in the CPSP map stored with pi are
sorted by their geodesic7 distance from pi. Then we just need to use interpolation search to find the
first point with distance 2r(A 0) - � and the last point with distance 2r(A 0) from pi. This can be
done in time O(log log |A \ Ci|) per point pi 2 A 0. Thus, the overall time to construct all brackets
is in O(log log N).

7 By using the geodesic distance (or, rather, the approximation thereof) we basically impose a di↵erent topology on the
space where A is embedded, but this is actually desirable.
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l, r = 1,n
dl,r = fB(P1), fB(Pn)
while |dl| > ✏ and |dr| > ✏ and l < r do

x = l + d -dl
dr-dl

(r - l)e {*}
dx = fB(Px)
if dx < 0 then

l, r = x, r
else

l, r = l, x
end if

end while

Algorithm 7.5: Pseudo-code for the root finding algorithm based on interpolation search. P is an array
containing the points of the shortest path from p1 = P1 to p2 = Pn, which can be precomputed.
di = fB(Pi) approximates the distance of Pi to object B. (*) Note that either dl or dr is negative.

7.4.4 Interpolation Search

Having determined two points p1,p2 2 A on di↵erent sides of surface B, the next goal is to find a
point p̂ 2 A “between” p1 and p2 that is “as close as possible” to B. In the following, we will call
such a point approximate intersection point (AIP). The true intersection curve fB(x) = fA(x) = 0
will pass close to p̂ (usually, it does not pass through any points of the point clouds).

Depending on the application, p̂ might already su�ce. If the true intersection points are needed,
then we refine the output of the interpolation search by the procedure described in Section 7.4.6.

Here, we can exploit the proximity graph: we just consider the points P12 that are on the shortest
path between p1 and p2, and we look for p̂ that assumes minp2P12 {|f(p)|}.

Let us assume that fB is monotonic along the path p1p2. Then, instead of doing an exhaustive
search along the path, we can utilize interpolation search to look for p̂ with f(p̂) = 0.8 This makes
sense here, because the “access” to the key of an element, i. e., an evaluation of fB(x), is fairly
expensive [Sedgewick, 1989]. The average runtime of interpolation search is in O(log log m), m =
number of elements.

Algorithm 7.5 for the interpolation search assumes that the shortest paths are precomputed and
stored in a map.

However, in practice, the memory consumption, albeit linear, could be too large for huge point
clouds. In that case, we can compute the path P on-the-fly at runtime by Algorithm 7.6. Theoretically
speaking, the overall algorithm is now in linear time. However, in practice, it still behaves sublinear
because the reconstruction of the path is negligible compared to evaluating fB.

If fB is not monotonic along the paths between the brackets, but the sign of fB(x) is consistent,
then we can utilize binary search to find p̂. (The complexity in that case is, of course, O(log m.)

7.4.5 Models with Boundaries

If the models have boundaries and the sampling rate of the root bracketing algorithm is too low,
not all intersections will be found (see Figure 7.29). In that case, some AIPs might not be reached,
because they are not connected through the proximity graph.

Therefore, we modify the r-SIG for our purpose a little bit. After constructing the graph, we
usually prune away all “long” edges by an outlier detection algorithm (see Section 7.1.2.5). Now, we
only mark these edges as “virtual”. Thus, we can still use the r-SIG for defining the surface as before.
For our interpolation search, however, we can also use the “virtual” edges so that small holes in the
model are bridged.

8 In practice, the interpolation search will never find exactly such a p̂, but instead a pair of adjacent points on the path
that straddle B
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q.insert(p1); clear P
repeat

p = q.pop
P.append( p )
for all pi adjacent to p do

if dgeo(pi,p2) < dgeo(p1,p2) then
insert pi into q with priority dgeo(pi,p2)

end if
end for

until p = p2

Algorithm 7.6: This algorithm can be used to initialize P for Algorithm 7.5 if precomputing and storing
all shortest paths in a map is too expensive. (q is a priority queue.)

x

p̂2

p̂1

d2

r

d1

Figure 7.28: An intersection sphere centered at an AIP pi. Its radius r can be determined approximately
with the help of a second point on the other side of B.

7.4.6 Precise Intersection Points

If two point clouds are intersecting, the interpolation search computes a set of AIPs. Around each of
them, an intersection sphere of radius r = min(kx- p̂1k, kx- p̂2k) contains a true intersection point,
where

x =
1

d1 + d2
(d2p1 + d1p2),

the p̂i have been computed by the interpolation search, lying on di↵erent sides of surface B, and
di = fB(pi). This idea is illustrated in Figure 7.28. So if the AIPs are not precise enough, we can
sample each such sphere to get more accurate (discrete) intersection points.

More precisely, if we want a precise collision point’s distance from the surfaces to be smaller than
✏2, we cover a given intersection sphere by s smaller spheres with diameter ✏2 and sample that
volume by s ln s + cs many points so that each of the s spheres gets a point with high probability.
For each of these, we just determine the distance to both surfaces.

Rogers [1963] showed that a sphere with radius a·b can be covered by at most s = d
p

3 ae3 smaller
spheres of radius b. Since we would like to cover the intersection sphere by spheres with radius
b = ✏2/2, we have to choose a = 2r/✏2, so that a·b = r. As a consequence,

s = d
p

3
2r

✏2
e3.

For example, to cover an intersection sphere with spheres of radius ✏, then ✏2 = 2✏ and s =
d
p

3 r/✏e3.
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I1
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B
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Figure 7.29: Models with boundaries can cause errors (I1 could remain undetected), which can be avoided
by“virtual” edges in the proximity graph.

7.4.7 Running time

Under some mild assumptions about the point cloud, the running time of the algorithm is in
O(log log N), where N is the number of points [Klein and Zachmann, 2005].

Empirically, it was found that about n = O(a lna) = 200 samples in phase 1 of the algorithm
yields a su�cient bracket density so that the error is only about 0.1%.

The performance of a simple implementation in C++, running on a 2.8 GHz Pentium-IV, for
detecting all intersections between two objects, depending on di↵erent densities of the point clouds,
is shown in Figure 7.30. (We define the density of an object A with N points as the ratio of N over
the number of volume units of the AABB of A (which is at most 8 as each object is scaled uniformly
so that it fits into a cube of size 23). Computing the shortest paths between (pi,pj) on-the-fly during
interpolation search (see Algorithm 7.6) incurs at most an additional 10% of the overall running time.

Handout zur Vorlesung “Geometrische Datenstrukturen” – Not for redistribution!



Langetepe/Zachmann: Geometric Data Structures for CG 143

aphrodite

buddha

num. points

avg. time / msec

700006000050000400003000020000100000

3

2.5

2

1.5

1

0.5

0

Figure 7.30: The plot shows the running time de-
pending on the size of the point clouds for two
objects (see Figures 7.19 and 7.31). The time is
the average of all intersection detection times for
distances between 0 and 1.5 and a lot of di↵erent
orientations for two identical copies of each object.

Figure 7.31: One of the test objects for Fig-
ures 7.30.
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